Ta có:
\(444^{555}=\left(111.4\right)^{555}=111^{555}.4^{555}=111^{555}.\left(4^5\right)^{111}=111^{555}.1024^{111}\)
\(555^{444}=\left(111.5\right)^{444}=111^{444}.5^{444}=111^{444}.\left(5^4\right)^{111}=111^{444}.625^{111}\)
Vì \(111^{555}.1024^{111}>111^{444}.625^{111}\) nên \(444^{555}>555^{444}\)
Vậy \(444^{555}>555^{444}\)