Ta chứng minh : \(10^n+18n-1⋮27\left(n\in N\right)\)
Đặt : \(A=10^n+18n-1=10^n-1-9n+27n\)
\(=99...9-9n+27n\) ( n c/s 9 )
\(=9\left(11...1-n\right)+27n\) ( n c/s 1 )
Vì : n là tổng các c/s của 11...1 ( n c/s 1 ) \(\Rightarrow11...1-n⋮3\) ( n c/s 1 ) \(\Rightarrow A⋮27\)
\(\Rightarrow10^n+18n-2\) chia cho 27 dư 26
Vậy \(10^n+18n-2\) chia cho 27 dư 26 với \(n\in N\)