b) Ta có: \(B=\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
\(=\dfrac{2}{4+\sqrt{6+2\sqrt{5}}}\)
\(=\dfrac{2}{4+\sqrt{5}+1}\)
\(=\dfrac{2}{5+\sqrt{5}}=\dfrac{5-\sqrt{5}}{10}\)
b) Ta có: \(B=\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
\(=\dfrac{2}{4+\sqrt{6+2\sqrt{5}}}\)
\(=\dfrac{2}{4+\sqrt{5}+1}\)
\(=\dfrac{2}{5+\sqrt{5}}=\dfrac{5-\sqrt{5}}{10}\)
rút gọn biểu thức
a, \(\dfrac{1}{\sqrt{7-\sqrt{24}+1}}-\dfrac{1}{\sqrt{7+\sqrt{24}+1}}\)
b,\(\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
c,\(\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4}+\sqrt{7}}+\dfrac{4-\sqrt{7}}{3\sqrt{7}-\sqrt{4}-\sqrt{7}}\)
Rút gọn:
a) \(2\sqrt{98}-3\sqrt{18}+\dfrac{1}{2}\sqrt{32}\)
b)\(\left(5\sqrt{2}+2\sqrt{5}\right).\sqrt{5}-\sqrt{250}\)
c)\(\left(2\sqrt{3}-5\sqrt{2}\right).\sqrt{3}-\sqrt{36}\)
d)\(3\sqrt{48}+2\sqrt{27}-\dfrac{1}{3}\sqrt{243}\)
e) \(6\sqrt{\dfrac{1}{3}}+\dfrac{9}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}\)
f)\(4\sqrt{\dfrac{1}{2}}-\dfrac{6}{\sqrt{2}}\dfrac{2}{\sqrt{2}+1}\)
a. A=\(\dfrac{\sqrt{3}-3}{\sqrt{2-\sqrt{3}}+2\sqrt{2}}+\dfrac{\sqrt{3}+3}{\sqrt{2+\sqrt{3}}-2\sqrt{2}}\)
b. B=\(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
c. \(5.\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}.\sqrt{20}+\sqrt{5}\)
thực hiện phép tính:
1, \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
2,\(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}+\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\)
3,\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}+\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}\)
4,\(\dfrac{3-\sqrt{3}}{2\sqrt{3}-1}+\dfrac{3+\sqrt{3}}{2\sqrt{3}-1}\)
5,\(\dfrac{2\sqrt{3}-4}{\sqrt{3}-1}+\dfrac{2\sqrt{2}-1}{\sqrt{2}-1}-\dfrac{1+\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)
Thực hiện phép tính:
a. \(2\sqrt{16}+\sqrt{2}.\sqrt{0,02}-\dfrac{\sqrt{12,1}}{\sqrt{0,1}}\)
b. \(5\sqrt{20}-4\sqrt{45}+\dfrac{15}{\sqrt{5}}\)
c. \(\left(\dfrac{\sqrt{6}-\sqrt{3}}{5\sqrt{2}-5}+\dfrac{\sqrt{5}}{5}\right):\dfrac{2}{\sqrt{5}-\sqrt{3}}\)
d. \(\dfrac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}\)
thực hiện phép tính
A=\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
B=\(\sqrt{\dfrac{3-\sqrt{5}}{\sqrt{10}+\sqrt{2}}}\cdot\left(3+\sqrt{5}\right)\)
Rút gọn biểu thức :
a) \(\sqrt{\dfrac{2-\sqrt{5}}{\sqrt{5}-3}}:\sqrt{\left(\sqrt{5}-3\right)\left(2-\sqrt{5}\right)}\)
b) \(\dfrac{2+3\sqrt{5}}{\sqrt{5}-2}-\dfrac{\sqrt{5}+1}{\sqrt{5}+2}\)
c) \(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(\dfrac{1}{\sqrt{3}-1}-\dfrac{1}{\sqrt{3}+1}\)
\(2\sqrt{5}-3\sqrt{45}+\sqrt{500}\)
\(\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}\)
\(\dfrac{1}{2+\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}+5\sqrt{3}\)
\(\sqrt{3}-\sqrt{4+2\sqrt{3}}\)
\(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}\)
\(\sqrt{37-20\sqrt{3}+\sqrt{37+20\sqrt{3}}}\)
rút gọn biểu thức
K=\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\)
M=\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
N=\(\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)