Rút gọn các biểu thức:
a) {\(\dfrac{1}{x^2}\) + \(\dfrac{1}{y^2}\) + \(\dfrac{2}{x+y}\)(\(\dfrac{1}{x}\) + \(\dfrac{1}{y}\))} : \(\dfrac{x^3+y^3}{x^2y^2}\)
b) {\(\dfrac{1}{\left(2x-y\right)^2}\) + \(\dfrac{2}{4x^2-y^2}\) + \(\dfrac{1}{\left(2x+y\right)^2}\)} . \(\dfrac{4x^2+4xy+y^2}{16x}\)
c) (\(\dfrac{x^2-xy}{x^2y+y^3}\) - \(\dfrac{2x^2}{y^3-xy^2+x^2y-x^3}\))(1 - \(\dfrac{y-1}{x}\) - \(\dfrac{y}{x^2}\))
thuc hien phep tinh
a.\(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
b.\(\left(\dfrac{1}{x^2+1}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+1-2\right)\)
c.\(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)
d.\(\left(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}+\dfrac{y}{x^2+y^2}\right):\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^3-x^2y+xy^2-y^3}\right)\)
Thực hiện các phép tính :
a) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
b) \(\left(\dfrac{2}{x-2}-\dfrac{2}{x+2}\right).\dfrac{x^2+4x+4}{8}\)
c) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
d) \(\left(\dfrac{x}{x^2-25}-\dfrac{x-5}{x^2+5x}\right):\dfrac{2x-5}{x^2+5x}+\dfrac{x}{5-x}\)
e) \(\left(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}+\dfrac{y}{x^2+y^2}\right):\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^3-x^2y+xy^2-y^3}\right)\)
Bài 1. Thực hiện các phép tính sau
a) xy(3x-2y)-2\(xy^2\)
b) (\(x^2\) +4x+4):(x+2)
c\(\dfrac{2\left(x-1\right)}{x^2}.\dfrac{x}{\left(x-1\right)}\)
Bài 2.phân tích các đa thức sau thành nhân tử
a)\(2x^2\)-4x+2 b)\(x^2-y^2+3x-3y\)
Thực hiện phép tính sau:
d) \(\left(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}+\dfrac{y}{x^2+y^2}\right):\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^2-x^2y+xy^2-y^3}\right)\)
Cho biểu thức :
A = \(\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right)\cdot\dfrac{2x}{x+y}+\dfrac{y}{x-y}\) (với x ≠ +-y )
1) Rút gọn A
2) Cho x<y<0 và \(\dfrac{x^2+y^2}{xy}\) = \(\dfrac{25}{12}\) . Tính giá trị của biểu thức A
Thực hiện phép tính:
a) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
b) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
c) \(\dfrac{xy}{ab}+\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}-\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)
d) \(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
Thực hiện các phép tính với các phân thức sau:
a) \(\dfrac{4a^2-3a+5}{a^3-1}-\dfrac{1-2a}{a^2+a+1}-\dfrac{6}{a-1}\)
b) \(\dfrac{5}{a+1}-\dfrac{10}{a-\left(a^2+1\right)}-\dfrac{15}{a^3+1}\)
c) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
d) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
e) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
f) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
1.Rút gọn rồi tính giá trị của biểu thức sau với \(x=1;y=-\dfrac{1}{2}\)
A=\(\left(\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\right):\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
2.Chứng minh rằng giá trị của biểu thức sau bằng 1 với mọi giá trị \(x\ne0\) và \(x\ne-1\)
B=\(\left(\dfrac{x+1}{x}\right)^2:\left[\dfrac{x^2+1}{x^2}+\dfrac{2}{x+1}\left(\dfrac{1}{x}+1\right)\right]\)