\(=\sqrt{\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}}-2-\sqrt{10}+3-2\sqrt{2}\)
\(=\sqrt{\sqrt{10}}+1-\sqrt{10}-2\sqrt{2}\)
\(=\sqrt{\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}}-2-\sqrt{10}+3-2\sqrt{2}\)
\(=\sqrt{\sqrt{10}}+1-\sqrt{10}-2\sqrt{2}\)
rút gọn :
a)\(\left(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}+\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
b) \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
c) \(\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\dfrac{6}{2-\sqrt{10}}+\sqrt{67+12\sqrt{7}}\)
d) \(\left(\dfrac{\sqrt{5}}{\sqrt{2}+1}+\dfrac{14}{2\sqrt{2}-1}-\dfrac{6}{2-\sqrt{2}}\right).\sqrt{17-12\sqrt{2}}\)
Câu 1: Rút gọn:
a) \(2\sqrt{18}-4\sqrt{50}-3\sqrt{32}\)
b) \(\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
c) \(\dfrac{\sqrt{10}+10}{1+\sqrt{10}}-\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}\)
Câu 2: Giải phương trình:
\(\sqrt{9x^2-30x+25}=5\)
* Rút gọn biểu thức
a. \(\sqrt{72}-5\sqrt{2}+3\sqrt{12}\)
b. \(6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-5\sqrt{2}\)
c. \(\dfrac{\sqrt{8}-2}{\sqrt{2}-1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{3}{\sqrt{3}}\)
d. \(\sqrt[3]{64}+\sqrt[3]{27}-2\sqrt[3]{-8}\)
* Rút gọn các biểu thức
a. \(\sqrt{72}-5\sqrt{2}+3\sqrt{12}\)
b. \(6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-5\sqrt{2}\)
c. \(\dfrac{\sqrt{8}-2}{\sqrt{2}-1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{3}{\sqrt{3}}\)
d. \(\sqrt[3]{64}+\sqrt[3]{27}-2\sqrt[3]{-8}\)
* Rút gọn các biểu thức
a. \(\sqrt{72}-5\sqrt{2}+3\sqrt{12}\)
b. \(6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-5\sqrt{2}\)
c. \(\dfrac{\sqrt{8}-2}{\sqrt{2}-1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{3}{\sqrt{3}}\)
d. \(\sqrt[3]{64}+\sqrt[3]{27}-2\sqrt[3]{-8}\)
Rút gọn các biểu thức sau:
a) \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}\)
b) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
c) \(3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+3\sqrt{2}\)
d) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
e) \(\dfrac{\sqrt{a}-\sqrt{b}^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\) với a > 0, b > 0
Rút gọn biểu thức sau
\(a.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
\(b.\dfrac{\sqrt{\dfrac{5}{3}}+\sqrt{\dfrac{3}{5}}-2}{\sqrt{\dfrac{5}{3}}-\sqrt{\dfrac{3}{5}}}\)
\(\left(\dfrac{\sqrt{6}-\sqrt{10}}{\sqrt{5}-\sqrt{3}}+3\right)\left(3+\dfrac{2\sqrt{5}+\sqrt{6}}{\sqrt{10}+\sqrt{3}}\right)\)
Rút gọn biểu thức trên
Rút gọn biểu thức sau
\(a.\dfrac{\sqrt{5}-2}{5+2\sqrt{5}}-\dfrac{1}{2+\sqrt{5}}+\dfrac{1}{\sqrt{5}}\)
\(b.\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)
\(c.\dfrac{2\sqrt{3}-4}{\sqrt{3}-1}+\dfrac{2\sqrt{2}-1}{\sqrt{2}-1}-\dfrac{1+\sqrt{6}}{\sqrt{2}+3}\)