\(=\left(\frac{x^3+8}{4x}\right):\left(\frac{x^2-2x+4}{4x}\right)=\frac{\left(x+2\right)\left(x^2-2x+4\right)}{4x}.\frac{4x}{\left(x^2-2x+\right)}=x+2\)
\(=\left(\frac{x^3+8}{4x}\right):\left(\frac{x^2-2x+4}{4x}\right)=\frac{\left(x+2\right)\left(x^2-2x+4\right)}{4x}.\frac{4x}{\left(x^2-2x+\right)}=x+2\)
Rút gọn : \(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y+xy^2}\right)\left(y+\frac{x^2}{x+y}\right)\)
Rút gọn : \(\left(1+\frac{1}{a+x}\right):\left(1-\frac{1}{a+x}\right).\left[1-\frac{1-\left(a^2+x^2\right)}{2ax}\right]\)
Rút gọn : \(\left(x^2-\frac{1}{x}\right)\left(\frac{x+1}{x^2+x+1}+\frac{1}{x-1}\right)\)
Rút gọn : \(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
rút gọn : \(\left(\frac{x}{x^2-16}-\frac{x-4}{x^2+4x}\right):\frac{2x-4}{x^2+4x}\)
Rút gọn A = \(\frac{x^2}{x^2-1}-\frac{x^2}{x^2+1}\left(\frac{x}{x+1}+\frac{1}{x^2+x}\right)\)
Rút gọn : \(\left(\frac{1}{2x-y}+\frac{3y}{x^2-4x^2}-\frac{2}{2x+y}\right):\left(\frac{4x^2+y^2}{4x^2-y^2}+1\right)\)
Cho \(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\)
\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}\)
a) Rút gọn A và B
b) Tìm x thuộc Z để A<x<B
Rút gọn biểu thức A = \(\left(2-1\frac{1}{4}\right)\left(2-1\frac{1}{9}\right)\left(2-1\frac{1}{16}\right)...\left(2-1\frac{1}{400}\right)\)