\(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
=\(\left(1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)\(\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
=\(\left(1+\sqrt{x}\right)\)\(\left(1-\sqrt{x}\right)\)
= \(1^2\) - \(\sqrt{x}^2\)
= 1- \(x\)