\(F=\sqrt[3]{27-27\sqrt{2}+18-2\sqrt{2}}\)\(+\sqrt[3]{27+27\sqrt{2}+18+2\sqrt{2}}\)
\(F=\sqrt[3]{\left(3-\sqrt{2}\right)^3}+\sqrt[3]{\left(3+\sqrt{2}\right)^3}\)
\(F=3+\sqrt{2}+3-\sqrt{2}=6\)
\(F=\sqrt[3]{27-27\sqrt{2}+18-2\sqrt{2}}\)\(+\sqrt[3]{27+27\sqrt{2}+18+2\sqrt{2}}\)
\(F=\sqrt[3]{\left(3-\sqrt{2}\right)^3}+\sqrt[3]{\left(3+\sqrt{2}\right)^3}\)
\(F=3+\sqrt{2}+3-\sqrt{2}=6\)
câu 2 rút gọn A= \(\sqrt{12}+2\sqrt{27}+3\sqrt{45}-9\sqrt{48}\)
B=\(\left(\sqrt{48}-2\sqrt{75}+\sqrt{108}-\sqrt{147}\right):\sqrt{3}\)
Bài 1 Rút gọn: D = \(\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\left(29-12\sqrt{5}\right)}}\)
\(\sqrt{50}-3\sqrt{45}-2\sqrt{18}+5\sqrt{20}\)
Thực hiện rút gọn phép tính này nha mng
* Rút gọn biểu thức
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
- Rút gọn biểu thức
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
* Rút gọn biểu thức
a. \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
b. \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
c. \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
d. \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
rút gọn biểu thức
a.\(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b.\(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c.\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d.\(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
Bài 1
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{2x+1}{x^2+1}}\)
b. \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)
* Rút gọn biểu thức
a. \(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)
b. \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
c. \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(\dfrac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}\) - \(\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
rút gọn