\(=5\sqrt{2}-9\sqrt{5}-6\sqrt{2}+10\sqrt{5}=\sqrt{5}-\sqrt{2}\)
√50−3√45−2√18+5√20
= 5√2–9√5–6√2+10√5
=√5–√2
\(=5\sqrt{2}-9\sqrt{5}-6\sqrt{2}+10\sqrt{5}=\sqrt{5}-\sqrt{2}\)
√50−3√45−2√18+5√20
= 5√2–9√5–6√2+10√5
=√5–√2
* Rút gọn biểu thức
a. \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
b. \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
c. \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
d. \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
THỰC HIỆN PHÉP TÍNH
(\(\sqrt{45}\)-\(\sqrt{20}\)+\(\sqrt{5}\)) : \(\sqrt{6}\)
* Thực hiện phép tính.
a.\(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
b.\(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
c.\(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}-\dfrac{5}{\sqrt{5}}\right).\dfrac{1}{2-\sqrt{5}}\)
d.\(\sqrt{\left(2-\sqrt{5}\right)^2-\sqrt{5}}\)
tính
\(2\sqrt{20}-\sqrt{45}+3\sqrt{18}+3\sqrt{32}-\sqrt{50}\)\(2\sqrt{20}-\sqrt{45}+3\sqrt{18}+3\sqrt{32}-\sqrt{50}\)
* Rút gọn biểu thức
a. \(\sqrt{48}-2\sqrt{32}-\sqrt{75}+3\sqrt{50}\)
b. \(\sqrt{20}-15\sqrt{\dfrac{1}{5}}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
c. \(\dfrac{3}{3+2\sqrt{3}}+\dfrac{3}{3-2\sqrt{3}}\)
Câu 1: Rút gọn:
a) \(2\sqrt{18}-4\sqrt{50}-3\sqrt{32}\)
b) \(\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
c) \(\dfrac{\sqrt{10}+10}{1+\sqrt{10}}-\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}\)
Câu 2: Giải phương trình:
\(\sqrt{9x^2-30x+25}=5\)
Thực hiện phép tính:
a) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
b) \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1-\sqrt{2}-\sqrt{3}\right)\)
Bài 1
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{2x+1}{x^2+1}}\)
b. \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)
* Rút gọn biểu thức
a. \(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)
b. \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
c. \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
Mng giúp mình vs ạ rút gọn bth này nha:
P=\(\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x+1}}{x+\sqrt{x}}\)