\(\frac{2}{1+\sqrt{2}-\sqrt{3}}\)
=\(\frac{1+\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}\).\(\frac{2}{1+\sqrt{2}-\sqrt{3}}\)
=\(\frac{2\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{2\left(1+\sqrt{2}+\sqrt{3}\right)}{1+\sqrt{2}+\sqrt{3}+\sqrt{2}+2+\sqrt{6}-\sqrt{3}-\sqrt{6}-3}\)
\(=\frac{2\left(1+\sqrt{2}+\sqrt{3}\right)}{2\sqrt{2}}\)
\(=\frac{1+\sqrt{2}+\sqrt{3}}{\sqrt{2}}\)
\(=\frac{\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\sqrt{2}.\sqrt{2}}\)
\(=\frac{\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{2}\)
\(\frac{2}{1+\sqrt{2}-\sqrt{3}}\)
=\(\frac{2\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{2\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}\right)^2-3}\)
\(=\frac{2\left(1+\sqrt{2}+\sqrt{3}\right)}{3-3+2\sqrt{2}}\)
\(=\frac{\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{2}\)