\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{15}+\sqrt{16}}\)
= \(-\left(\sqrt{1}-\sqrt{2}\right)-\left(\sqrt{2}-\sqrt{3}\right)-...-\left(\sqrt{15}-\sqrt{16}\right)\)
=\(-\left(\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{15}-\sqrt{16}\right)\)
=\(-\left(1-\sqrt{16}\right)=-\left(1-4\right)=3\)