\(\dfrac{\sqrt{x-\sqrt{2x-1}}}{\sqrt{2}}=\dfrac{\sqrt{\left(2x-1\right)-2\sqrt{2x-1}+1}}{2}=\dfrac{\sqrt{\left(\sqrt{2x-1}-1\right)^2}}{2}=\dfrac{|\sqrt{2x-1}-1|}{2}=\dfrac{1-\sqrt{2x-1}}{2}\left(do\dfrac{1}{2}\le x< 1\right)\)
\(\dfrac{\sqrt{x-\sqrt{2x-1}}}{\sqrt{2}}=\dfrac{\sqrt{\left(2x-1\right)-2\sqrt{2x-1}+1}}{2}=\dfrac{\sqrt{\left(\sqrt{2x-1}-1\right)^2}}{2}=\dfrac{|\sqrt{2x-1}-1|}{2}=\dfrac{1-\sqrt{2x-1}}{2}\left(do\dfrac{1}{2}\le x< 1\right)\)
B4: Rút gọn biểu thức:
a, \(\dfrac{x^2}{y^2}\div\sqrt{\dfrac{x^2}{y^4}}\) với x,y \(\ne\) 0
b, \(\sqrt{\dfrac{27(x-1)^2}{12}}+\dfrac{3}{2}-(x-2)\sqrt{\dfrac{50x^2}{8(x-2)^2}}\) với 1<x<2
Rút gọn các biểu thức sau:
A = \(\dfrac{3}{2\left(2x-1\right)}\sqrt{8\left(4x^2-2x+1\right)x^4}\)
B = \(\dfrac{a-b}{b^2}\sqrt{\dfrac{a^2b^4}{a^2-2ab+b^2}}\)
Rút gọn các biểu thức :
a) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}};\left(x\ge0\right)\)
b) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}};\left(x\ne1;y\ne1;y\ge0\right)\)
bài 1 rút gọn biểu thức A= \(\sqrt{x+\sqrt{2x-1}}\) - \(\sqrt{x-\sqrt{2x-1}}\)
1. Tìm x để bt có nghĩa
A=\(\dfrac{\sqrt{2x+3}}{\sqrt{x-3}}\)
B=\(\sqrt{\dfrac{2x+3}{x-3}}\)
C=\(\sqrt{-\dfrac{5}{x+2}}\)
D=\(\sqrt{-x}+\dfrac{1}{x+3}\)
2. Rút gọn bt
A=\(\sqrt{\dfrac{a+\sqrt{a^2-1}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-1}}{2}};\left(a>1\right)\)
B=\(\sqrt{\dfrac{a+\sqrt{a^2-1}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}};\left(a\ge\sqrt{b};b\ge0\right)\)
C=\(\left(1+\dfrac{a+\sqrt{a}}{a+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}+1}\right);\left(a\ge0,a\ne1\right)\)
D=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}};\left(x>0\right)\)
Tính giá trị của biểu thức
A=\(\dfrac{1+2x}{1+\sqrt{1+2x}}+\dfrac{1-2x}{1-\sqrt{1-2x}}\) với x=\(\dfrac{\sqrt{3}}{4}\)
B=\(\dfrac{2b\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}\right)\) và a>0,b>0
C=\(\dfrac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{1-a}{a}}-\sqrt{\dfrac{a}{1-a}}\right)\) và 0<a<1
\(B=\dfrac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\)rút gọn biểu thức với x>0 ( cho em xin lời giải chi tiết ạ )
Rút gọn các biểu thức:
C = \(\sqrt{b^2\left(b-1\right)^2};\left(b< 0\right)\)
D = \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3};x< 3\)
Rút gọn biểu thức:
D = \(\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}}\)