\(=\dfrac{4a^2b^3}{4\sqrt{2}a^3b^3}=\dfrac{1}{a\sqrt{2}}=\dfrac{\sqrt{2}}{2a}\)
\(=\dfrac{4a^2b^3}{4\sqrt{2}a^3b^3}=\dfrac{1}{a\sqrt{2}}=\dfrac{\sqrt{2}}{2a}\)
Rút gọn các biểu thức
a) \(\dfrac{\sqrt{63y^3}}{\sqrt{7y}};\left(y>0\right)\)
b) \(\dfrac{\sqrt{48x^3}}{\sqrt{3x^5}};\left(x>0\right)\)
c) \(\dfrac{\sqrt{45mn2}}{\sqrt{20m}};\left(m>0;n>0\right)\)
d) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}};\left(a< 0;b\ne0\right)\)
Rút gọn các biểu thức:
a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\) ( a <0 ; b # 0 )
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) ( x lớn hơn hoặc = 0)
c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\) ( x<3 tại x = 0,5)
d) \(\dfrac{x-1}{\sqrt{y}-1}.\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\) ( x # 1; y >= 0, y #1)
e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\) ( x > -2 tại x = -\(\sqrt{2}\))
Rút gọn các biểu thức :
a) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}};\left(x\ge0\right)\)
b) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}};\left(x\ne1;y\ne1;y\ge0\right)\)
Rút gọn biểu thức:
a) \(\sqrt{\dfrac{x-2\sqrt{x}-1}{x+2\sqrt{x}+1}}\left(x\ge0\right)\)
b) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\left(x\ne1,y\ne1\right),y\ge0\)
B4: Rút gọn biểu thức:
a, \(\dfrac{x^2}{y^2}\div\sqrt{\dfrac{x^2}{y^4}}\) với x,y \(\ne\) 0
b, \(\sqrt{\dfrac{27(x-1)^2}{12}}+\dfrac{3}{2}-(x-2)\sqrt{\dfrac{50x^2}{8(x-2)^2}}\) với 1<x<2
Câu 1:
Q= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(a\ge0,a\ne4,a\ne1\right)\)
a) Rút gon Q
b) Tìm giá trị của a để Q dương
Caau2:
B= \(\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\left(x\ge0,x\ne1\right)\)
a) rút gon B
CHỨNG MINH
a) \(\frac{\left(\sqrt{a}+1\right)^2-4\sqrt{a}}{\sqrt{a}-1}+\frac{a+\sqrt{a}}{\sqrt{a}}=2\sqrt{a}\) \(\left(a>0;a\ne1\right)\)
b) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\) \(\left(x\ge0;y\ge0\right)\)
c) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\frac{a-b}{\sqrt{a}-\sqrt{b}}=1\) \(\left(a>0;b>0;a\ne b\right)\)
d) \(\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\right]:\sqrt{b}=2\) \(\left(a>0;b>0\right)\)
Giúp mình với, cảm ơn mn <3
1. Tìm x để bt có nghĩa
A=\(\dfrac{\sqrt{2x+3}}{\sqrt{x-3}}\)
B=\(\sqrt{\dfrac{2x+3}{x-3}}\)
C=\(\sqrt{-\dfrac{5}{x+2}}\)
D=\(\sqrt{-x}+\dfrac{1}{x+3}\)
2. Rút gọn bt
A=\(\sqrt{\dfrac{a+\sqrt{a^2-1}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-1}}{2}};\left(a>1\right)\)
B=\(\sqrt{\dfrac{a+\sqrt{a^2-1}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}};\left(a\ge\sqrt{b};b\ge0\right)\)
C=\(\left(1+\dfrac{a+\sqrt{a}}{a+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}+1}\right);\left(a\ge0,a\ne1\right)\)
D=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}};\left(x>0\right)\)
a, \(\dfrac{\sqrt[]{7-2\sqrt[]{6}}}{\sqrt[]{6}-1}\)
b, 2.|x+y|.\(\sqrt[]{\dfrac{1}{x^2+2xy+y^2}}\) (x+y>0)
c, \(\dfrac{\left(x-5\right)^4}{\left(4-x\right)^2}\)-\(\dfrac{x^2-25}{x-4}\)(x<4)