a) Ta có: \(\left(x-\dfrac{1}{1-x}\right):\dfrac{x^2-x+1}{x^2-2x+1}\)
\(=\left(x+\dfrac{1}{x-1}\right):\dfrac{x^2-x+1}{\left(x-1\right)^2}\)
\(=\dfrac{x^2-x+1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{x^2-x+1}\)
\(=x-1\)
b) Ta có: \(\left(1+\dfrac{x}{y}+\dfrac{x^2}{y^2}\right)\left(1-\dfrac{x}{y}\right)\cdot\dfrac{y^2}{x^3-y^3}\)
\(=\left(\dfrac{y^2}{y^2}+\dfrac{xy}{y^2}+\dfrac{x^2}{y^2}\right)\cdot\left(\dfrac{y-x}{y}\right)\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2}{y^2}\cdot\dfrac{-\left(x-y\right)}{y}\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{-1}{y}\)