câu b trc nha
B = \(\dfrac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)
= \(\dfrac{4+\sqrt{2}-\sqrt{3}-\sqrt{2}.\sqrt{3}+2\sqrt{2}}{2+\sqrt{2}-\sqrt{3}}\)
= \(\dfrac{2+2+\sqrt{2}+2\sqrt{2}-\sqrt{3}-\sqrt{6}}{2+\sqrt{2}-\sqrt{3}}\)
= \(\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)+2\left(\sqrt{2}+1\right)-\sqrt{3}\left(\sqrt{2}+1\right)}{2+\sqrt{2}-\sqrt{3}}\)
= \(\dfrac{\left(\sqrt{2}+1\right)\left(2+\sqrt{2}-\sqrt{3}\right)}{2+\sqrt{2}-\sqrt{3}}\)
= \(\sqrt{2}\) + 1
A = \(\dfrac{21}{2}\) . (\(\sqrt{4+2\sqrt{3}}\) + \(\sqrt{6-2\sqrt{5}}\) )2 - 15\(\sqrt{15}\)
- 3(\(\sqrt{4-2\sqrt{3}}\) +\(\sqrt{6+2\sqrt{5}}\) )2
= \(\dfrac{21}{2}\).(\(\sqrt{\left(\sqrt{3}+1\right)^2}\) + \(\sqrt{\left(\sqrt{5}-1\right)^2}\))2-15\(\sqrt{15}\)
-3(\(\sqrt{\left(\sqrt{3}-1\right)^2}\) + \(\sqrt{\left(\sqrt{5}+1\right)^2}\))2
= \(\dfrac{21}{2}\).(\(\sqrt{3}\) +1+ \(\sqrt{5}\) - 1)2 -3.(\(\sqrt{3}\) - 1 + \(\sqrt{5}\) +1)2
- 15\(\sqrt{15}\)
= \(\dfrac{21}{2}\).(8+2\(\sqrt{15}\) ) - 3(8 + 2\(\sqrt{15}\) ) -15\(\sqrt{15}\)
= \(\dfrac{15}{2}\) .2.(4+\(\sqrt{15}\) ) - 15\(\sqrt{15}\)
= 15.( 4 + \(\sqrt{15}\) ) - 15\(\sqrt{15}\)
= 15.(4+\(\sqrt{15}\) -\(\sqrt{15}\)) =15.4 = 60
Vậy A = 60.