Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
:vvv

Rút gọn biểu thức:

\(\dfrac{\sqrt{a-2}+2}{3}\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)

Lê Thị Thục Hiền
8 tháng 6 2021 lúc 10:48

Đk:\(a>2\)

\(\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)

Đặt \(b=\sqrt{a-2}\Leftrightarrow a=b^2+2\)

Biểu thức \(\Leftrightarrow\dfrac{b+2}{3}\left(\dfrac{b}{3+b}+\dfrac{b^2+2+7}{11-b^2-2}\right):\left(\dfrac{3b+1}{b^2-3b}-\dfrac{1}{b}\right)\)

\(=\dfrac{b+2}{3}\left[\dfrac{b}{3+b}-\dfrac{b^2+9}{b^2-9}\right]:\left[\dfrac{3b+1}{b\left(b-3\right)}-\dfrac{b-3}{b\left(b-3\right)}\right]\)

\(=\dfrac{b+2}{3}.\dfrac{b\left(b-3\right)-b^2-9}{\left(b-3\right)\left(3+b\right)}:\dfrac{3b+1-\left(b-3\right)}{b\left(b-3\right)}\)

\(=\dfrac{b+2}{3}.\dfrac{-3\left(b+3\right)}{\left(b-3\right)\left(3+b\right)}.\dfrac{b\left(b-3\right)}{2\left(b+2\right)}\)

\(=-\dfrac{b}{2}\)

\(=\dfrac{\sqrt{a-2}}{-2}\)


Các câu hỏi tương tự
vi thanh tùng
Xem chi tiết
nam anh đinh
Xem chi tiết
nam anh
Xem chi tiết
Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...
Xem chi tiết
Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...
Xem chi tiết
em ơi
Xem chi tiết
Ngọc Minhh
Xem chi tiết
Liên Phạm Thị
Xem chi tiết
ngoc linh bui
Xem chi tiết