a: \(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b: \(=\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+5}{\sqrt{x}-2}\)
a, \(\dfrac{x-3\sqrt{x}+2}{x-\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b, \(\dfrac{x+6\sqrt{x}+5}{x-\sqrt{x}-2}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-=\dfrac{\sqrt{x}+5}{\sqrt{x}-2}\)