\(\frac{2^{12}\cdot3^5-\left(2^2\right)^6.3^5.3}{2^{12}.\left(3^2\right)^3+\left(2^3\right)^4.3^5}\)
=\(\frac{2^{12}\cdot3^5-2^{12}.3^5.3}{2^{12}.3^5+2^{12}.3^5}\)
=3
\(\frac{2^{12}\cdot3^5-\left(2^2\right)^6.3^5.3}{2^{12}.\left(3^2\right)^3+\left(2^3\right)^4.3^5}\)
=\(\frac{2^{12}\cdot3^5-2^{12}.3^5.3}{2^{12}.3^5+2^{12}.3^5}\)
=3
Tính giá trị của biểu thức:
A=\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\frac{8^5.\left(-5\right)^8\left(-2\right)^5.10^9}{2^{16}.5^7+20^8}^7\)
\(C=\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
Rút gọn các biểu thức trên .
(làm được bao nhiêu thì làm nhé :( )
Tính nhanh
\(\frac{4^6.3^4.9^5}{6^{12}}\)
\(\frac{3^{10}.11+9^5.5}{3^9.2^4}\)
2100-299-298-..-22-2
38:36+(22)4:29
1. Tính hợp lí :
a) \(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(\frac{-9}{2}\right)\right]-\frac{5}{6}\)
b) 7 + \(\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
2. Tìm các sô nguyên x biết:
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
Tính nhanh
\(\frac{2^5.3^7}{2^4.3^6}\)
\(\frac{16^5.9^{10}}{6^{18}}\)
\(\frac{12^5+12^6}{12^6.12^7}-\frac{12^8-12^9}{12^9-13^{10}}\)
rút gon
a,\(\frac{2.5^{22}-9.5^{21}}{25^{10}}\)
b,\(\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
c,\(\frac{\left(\left(-2\right)^2\right)^3.\left(-4\right)^2}{\left(-2\right)^3.\left(-2\right)^2}\)
d,\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
e,\(2^3+3.\left(\frac{1}{8}\right)^0-\left(\frac{1}{2^2}\right).4+\left[\left(-2\right)^2:\frac{1}{2}\right].8\)
f,\(\frac{\left(\frac{2}{5}\right)^7.5^5+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2+512}\)
a) \(\frac{2^{19}.2^{27}+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
b) \(\frac{\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3-\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)
Rút gọn
Tính:
a) \(\frac{\left[\left(-2\right)^2\right]^5}{\left(-2\right)^3\left(-2\right)^2\left(-4\right)^2}\)b) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6}\)\(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}^{ }-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)