Ta có:
\(A=\frac{x^3-53x+88}{\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)+16}=\frac{\left(x^3+8x^2\right)-\left(8x^2+64x\right)+\left(11x+88\right)}{\left[\left(x-1\right)\left(x-7\right)\right]\left[\left(x-3\right)\left(x-5\right)\right]+16}=\frac{x^2\left(x+8\right)-8x\left(x+8\right)+11\left(x+8\right)}{\left[x^2-8x+7\right]\left[x^2-8x+15\right]+16}=\frac{\left(x+8\right)\left(x^2-8x+11\right)}{\left[x^2-8x+7\right]\left[x^2-8x+15\right]+16}\)
Gọi \(x^2-8x+11=y\)
\(\Rightarrow A=\frac{y\left(x-8\right)}{\left(y-4\right)\left(y+4\right)+16}=\frac{y\left(x-8\right)}{y^2-16+16}=\frac{y\left(x-8\right)}{y^2}=\frac{x-8}{x^2-8x+11}\)