Ta có: \(B=\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}-\dfrac{4}{1-x^2}\)
\(=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{4}{x^2-1}\)
\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{-4x+4}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{-4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{-4}{x+1}\)
\(\dfrac{x-1}{x+1}\) - \(\dfrac{x+1}{-\left(1-x\right)}\) - \(\dfrac{4}{\left(1-x\right)\left(1+x\right)}\) MTC: -(1 - x)(1 + x)
= \(\dfrac{-\left(x-1\right)^2}{\text{-(1 - x)(1 + x)}}\) - \(\dfrac{\left(x+1\right)^2}{\text{-(1 - x)(1 + x)}}\) - \(\dfrac{-4}{\text{-(1 - x)(1 + x)}}\)
= \(\dfrac{-x^2+2x-1}{\text{-(1 - x)(1 + x)}}\) - \(\dfrac{x^2+2x+1}{\text{-(1 - x)(1 + x)}}\) - \(\dfrac{-4}{\text{-(1 - x)(1 + x)}}\)
= \(\dfrac{-2x^2+2}{\text{-(1 - x)(1 + x)}}\) = \(\dfrac{-2\left(x^2-1\right)}{\text{-(1 - x)(1 + x)}}\) = \(\dfrac{2\text{(x - 1)(1 + x)}}{\text{(1 - x)(1 + x)}}\) = \(\dfrac{2x-2}{1-x}\)