\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{2\sqrt{x}}{x-9}\) (ĐKXĐ: \(x>0;x\ne9\))
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\left[\dfrac{x-3\sqrt{x}+x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{2\sqrt{x}}\)
\(=\dfrac{2x}{2\sqrt{x}}\)
\(=\sqrt{x}\)
đk : x khác 9 ; x > 0
\(=\dfrac{x-3\sqrt{x}+x+3\sqrt{x}}{x-9}:\dfrac{2\sqrt{x}}{x-9}=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)