\(A=\frac{2cos2x.sinx}{cos2x}=2sinx\)
\(B=sinx.cosx\left(cos^4x-sin^4x\right)=\frac{1}{2}sin2x.\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)\)
\(=\frac{1}{2}sin2x.cos2x=\frac{1}{4}sin4x\)
\(A=\frac{2cos2x.sinx}{cos2x}=2sinx\)
\(B=sinx.cosx\left(cos^4x-sin^4x\right)=\frac{1}{2}sin2x.\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)\)
\(=\frac{1}{2}sin2x.cos2x=\frac{1}{4}sin4x\)
rut gon
\(A=\frac{1-sinx-cos2x}{sin2x-cosx}\)
\(B=\frac{sin2x+sinx}{1+cos2x+cosx}\)
\(C=\frac{tana-cota}{tana+cota}+cos2a\)
rút gon:
\(C=\left(1-sin^2x\right)cot^2x+1-cot^2x\)
\(D=\frac{cosx.tanx}{sin^2x}-cotx.cosx\)
Chứng minh đẳng thức sau
\(\dfrac{cos^3x-cos3x}{cosx} + \dfrac{sin^3x+sin3x}{sinx} = 3\)
Bài 1 : Chứng minh rằng
a) \(\frac{1-sinx}{cosx}=\frac{cosx}{1+sinx}\)
b) \(\frac{tanx}{sinx}-\frac{sinx}{cotx}=cosx\)
Bài 2 : Chứng minh các biểu thức sau độc lập với biến x
A= \(\frac{cot^2x-cos^2x}{cot^2x}+\frac{sinxcosx}{cotx}\)
B= \(cos^4x+sin^2xcos^2x+sin^{2^{ }}x\)
Bài 3 : Tính giá trị các biểu thức lượng giác
A=\(\frac{5cosx+6tanx}{5cosx-6tanx}\) biết tanx=2
B= \(\frac{4sinxcosx-3cos^2x}{^{ }1+3sin^2x}\) biết cotx = -6
Bài 4 : Tính giá trị các biểu thức lượng giác
A= \(\frac{cotx}{cotx-tanx}\) biết sinx=\(\frac{3}{5}\) với \(0^o< x\le90^o\)
B= sina+cosa tana biết cosa=\(\frac{1}{2}\) với \(\frac{3\pi}{2}< a< 2\pi\)
Bài 5 : Tính giá trị lượng giác còn lại của góc 2a nếu :
a) cos2\(\alpha\) = \(\frac{2}{5}\) biết \(0< \alpha< \frac{\pi}{4}\)
b) sin2\(\alpha\) = \(\frac{24}{25}\) biết \(\frac{-3\pi}{4}\le\alpha\le-\frac{\pi}{2}\)
Rut gon bieu thuc:
A=(sin4a+cos4a-1)/(sin6a+cos6a-1)
B=1-sin2a+cos2a
C= 1-sina.cosa.tana
D= cos4a+cos2a.sin2a+sin2a
E=cansin2a.(1+cotx)+cos2a(1+tana)
F= 1+sina/cosa.[1-(1-sina/cosa)2]
Ai giup minh voiii. Minh cam on nhieuu!
Tìm giá trị lớn M và nhỏ nhất m của biểu thưc:
a) \(P=sin^2x+2cos^2x\)
b) \(P=8sin^2x+3cos2x\)
c) \(P=sin^4x-cos^4x\)
d) \(P=sin^6x+cos^6x\)
Câu 1 : Dùng công thức cộng chứng minh các đẳng thức sau :
a/ sin(\(\frac{\pi}{4}+x\)) -sin \(\left(\frac{\pi}{4}-x\right)\)=\(\sqrt{2}sinx\)
b/ cos(x+y) cos(x-y)=cos\(^2\)x - sin\(^2\)y
c/\(\frac{tan^2x-tan^2y}{1-tan^2x.tan^2y}=tan\left(x+y\right)tan\left(x-y\right)\)
d/ cot2x=\(\frac{cot^2x-1}{2cotx}\)
e/ sin15\(^o\) + tan30\(^o\) cos15\(^o\)=\(\frac{\sqrt{6}}{3}\)
f/ \(cos^2x-sin\left(\frac{\pi}{6}+x\right)sin\left(\frac{\pi}{6}-x\right)=\frac{3}{4}\)
h/ \(\frac{tanx+tany}{tan\left(x+ y\right)}-\frac{tanx-tany}{tan\left(x-y\right)}=-2tanx.tany\)
Bài 1 CM các đẳng thức sau:
a, 1+ sin2a / sina + cosa - 1-tan ²a/2 / 1+ tan ²a/2 = sina
b, cota - tana = 2cot2a
c, 1+ cosa +cos2a + cos3a/ 2cos²a + cosa-1 = 2cosa
d, sin²a / sina- cosa - sina + cosa / tan²a = sina + cosa
e, sin²a - cos²(a-b ) + 2coscosb ×cos(a-b) = cos2a
f, cos²a - 2sina × ( 1-sina ) × cosa +( 1 + sina) × cosa - 2×(1+sina ) / 1- sina = cosa
Bài 2 CM các đẳng thức sau ko phụ thuộc vào x
a, A= sin⁶x + cos⁶x - 1 / sin⁴x + cos ⁴x -1
b, B = ( 2sin ⁶x - 3sin ⁴x - 4sin²x ) +( 2cos⁶x - 3 cos⁴x- 4cos⁴x
c, C= sin⁴x + 3cos⁴x -1 / sin⁶x + cos⁶x + 3cos⁴x-1
Giải giúp tớ 2 bài này vs tớ cảm ơn nhìu
Rút gọn:
P= \(\frac{sin^3a-cos^3a}{sina-cosa}\)
Q= \(\frac{sin^3x+cos^3x}{sinx+cosx}\)