Lời giải:
ĐK: $a, b>0$
\(A=\frac{\sqrt{ab}(\sqrt{a}-\sqrt{b})}{\sqrt{ab}}:\frac{2}{\sqrt{a}+\sqrt{b}}=(\sqrt{a}-\sqrt{b}).\frac{\sqrt{a}+\sqrt{b}}{2}=\frac{a-b}{2}\)
\(B=\frac{(\sqrt{a}+1).\sqrt{a}(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}{(a-b).(a\sqrt{a}+a)}=\frac{(a+\sqrt{a})(a-b)}{(a-b)(a\sqrt{a}+a)}=1\)