Ta có:
\(A=\left(\dfrac{x}{x^2-25}-\dfrac{x-5}{x^2+25}\right):\dfrac{2x-5}{x^2+5x}+\dfrac{x}{5-x}\) \(\left(x\ne\pm5\right)\)\(=\left(\dfrac{x\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)^2}{x\left(x+5\right)\left(x-5\right)}\right):\dfrac{2x-5}{x\left(x+5\right)}+\dfrac{x}{5-x}\)
\(=\left(\dfrac{x^2+5x-\left(x^2-5x+25\right)}{x\left(x-5\right)\left(x+5\right)}\right)\cdot\dfrac{x\left(x+5\right)}{2x-5}+\dfrac{x}{5-x}\)
\(=\left(\dfrac{x^2+5x-x^2+5x-25}{x\left(x-5\right)\left(x+5\right)}\right)\cdot\dfrac{x\left(x+5\right)}{2x-5}+\dfrac{x}{5-x}\)
\(=\left(\dfrac{10x-25}{x\left(x-5\right)\left(x+5\right)}\right)\cdot\dfrac{x\left(x+5\right)}{2x-5}+\dfrac{x}{5-x}\)
\(=\dfrac{10\left(2x-5\right)}{x\left(x-5\right)\left(x+5\right)}\cdot\dfrac{x\left(x+5\right)}{2x-5}+\dfrac{-x}{x-5}\)
\(=\dfrac{10}{x-5}+\dfrac{-x}{x-5}\)
\(=\dfrac{-x+10}{x-5}\)
Vậy \(A=\dfrac{-x+10}{x-5}\) với \(x\ne\pm5\).