Rút gọn :
a ) \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}\)
\(=\frac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{y\left(x+y\right)}{2x-y}\)
\(=\frac{xy+y^2}{2x-y}\)
Rút gọn :
a ) \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}\)
\(=\frac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{y\left(x+y\right)}{2x-y}\)
\(=\frac{xy+y^2}{2x-y}\)
Bài 2 Rút gọn
A=(\(x-\frac{4xy}{x+y}+y\)):(\(\frac{x}{x+y}-\frac{y}{x-y}-\frac{2xy}{x^2-y^2}\))
B=(\(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)):\(\frac{x^2+4x^2y^2+y^4-4}{x^2+y+xy+x}\):\(\frac{1}{2x^2+y+2}\)
Rút gọn : \(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+xy+x+y}:\frac{x+y}{2x^2+y+2}\)
Rút gọn và tính giá trị của biểu thức tại x = -1,76 và y = 3/25
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
a ) \(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)
Bài 1 : Tính giá trị biểu thức sau , biết x+y-2=0
a ) M = x^3+x^2y+2x^2-xy-y^2+3y+x-1
b ) N= x^3-2x^2-xy^2+2xy+2y+2x-2
c ) P = x^4+2x^3y-2x^3+x^2y^2-2x^2y-x*(x+y )+2x+3
Rút gọn :
b ) \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
Giup mình bài này nữa thôi nha
Rút gọn: \(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y+xy^2}\right):\frac{x+y}{x^2+xy+y^2}\)
Bài 1. Tìm GTNN của A.
A =\(\frac{x^4+2x^3+8x+16}{x^4-2x^3+8x^2-8x+16}\)
Bài 2. Rút gọn biểu thức và tính giá trị với x + y = 2005
P = \(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
Bài 3. Cho b>a>0 và \(\frac{a^2+b^2}{ab}\) = \(\frac{10}{3}\)
Tính A = \(\frac{a-b}{a+b}\)
bai 1: thuc hiem phep tinh.
a,(3x^3y-1/2x^2+1/5xy).6xy^3
b, 2/3x^2y.(3xy-x^2+y)
c, (xy-1).(xy+5)
d, (x^2y^2-1/2xy+2xy)x-2y