\(A=1-\left(\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right)\)
\(A=1-\left(\frac{-1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-\sqrt{x}+1}\right).\left(2\sqrt{x}-1\right)\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(2\sqrt{x}-1\right)}\)
\(A=1-\left(-1+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-\sqrt{x}+1}\right)\sqrt{x}\left(1-\sqrt{x}\right)\)
\(A=1-\left(\frac{-x+\sqrt{x}-1+x-\sqrt{x}}{x-\sqrt{x}+1}\right)\sqrt{x}\left(1-\sqrt{x}\right)\)
\(A=1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-\sqrt{x}+1}=\frac{x-\sqrt{x}+1-x+\sqrt{x}}{x-\sqrt{x}+1}=\frac{1}{x-\sqrt{x}+1}\)