Đặt \(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow A^2=16+2\sqrt{8+2\sqrt{10+2\sqrt{5}}}\cdot\sqrt{8-2\sqrt{10+2\sqrt{5}}}=16+2\sqrt{64-4\left(10+2\sqrt{5}\right)}=16+2\sqrt{24-8\sqrt{5}}=16+2\sqrt{\left(2\sqrt{5}-2\right)^2}=16+2\left(2\sqrt{5}-2\right)=12+4\sqrt{5}\)
\(\Rightarrow A=\sqrt{12+4\sqrt{5}}\)