a) ĐK: \(x>0;x\ne1\)
\(Q=\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)
\(=\left[\dfrac{1}{\sqrt{a}+1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right].\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
b) Ta có: \(Q=\dfrac{\sqrt{a}+1}{\sqrt{a}}=\dfrac{\sqrt{a}}{\sqrt{a}}+\dfrac{1}{\sqrt{a}}=1+\dfrac{1}{\sqrt{a}}>1\)