1. cho biểu thức
M=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a, rút gọn M
b, Tìm giá trị của a để M>-\(\dfrac{1}{2}\)
\(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right).\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
1) Rút gọn
2) Với gtri nào của a thì P=7
3) Với gtri nào của a thì P>6
rút gọn biểu thức A=\(\dfrac{\left(2-\sqrt{a}\right)-\left(\sqrt{a+3}\right)}{1+2\sqrt{a}}\) (với a>0) ; B=\(\dfrac{1}{1-\sqrt{2}+\sqrt{3}}-\dfrac{1}{1-\sqrt{2-\sqrt{3}}}\); C=\(\dfrac{1}{\sqrt{5-2}}+\dfrac{1}{\sqrt{5+\sqrt{2}}}\)
Rút gọn rồi so sánh giá trị của M với 1, biết :
\(M=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với \(a>0;a\ne1\)
Cho biểu thức :
\(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Rút gọn Q với \(a>0;a\ne4;a\ne1\)
b) Tìm giá trị của a để Q dương
cho biểu thức P=\(\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a,rút gọn biểu thức
b,tính giá trị của biểu thức với x=3 - \(2\sqrt{2}\)
Cho biểu thức A= \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a, Rút gọn biểu thức A
b, Tìm các giá trị để \(\dfrac{P}{A}\left(x-1\right)=0\)
cho M= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\div\left(1+\dfrac{\sqrt{x}}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a) rút gọn M
b) tính giá trị của M khi \(x=\dfrac{1}{3}\left(3+2\sqrt{2}\right)\)
c) tìm tất cả các giá trị của x sao cho B=x-4
d) tìm khoảng giá trị của x sao cho B <\(-\dfrac{2}{3}\)
Lm nhanh giúp mk nhé mk đang cần gấp
Cho biểu thức :
P=\(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a.Rút gọn P
b.Biết a > 1.Hãy so sánh P với \(\left|P\right|\)
c.Tìm giá trị nhỏ nhất của P