Cho phương trình : x\(^2\) + 2x -3 - m = 0
Chứng minh phương trình trên có hai nghiệm x\(_1\),x\(_2\) với mọi m. Tìm m để \(\dfrac{x_1}{x_2}\) - \(\dfrac{x_2}{x_1}\) = -\(\dfrac{8}{3}\)
Giải giúp mình với ạ !!!
Gọi x1, x2 là nghiệm của phương trình x2+2x-4=0. Hãy lập phương trình bậc hai có 2 nghiệm là:
a) x1+2 và x2+2
b) \(\dfrac{1}{x_1+1}\) và \(\dfrac{1}{x_2+1}\)
c) \(\dfrac{x_1}{x_2}\)và \(\dfrac{x_2}{x_1}\)
d) \(x^2_1\)+\(x^2_2\) và \(x_1\)+\(x_2\)
Mọi người giúp mình với. Cần gấp trước 19h15 hôm nay, mình cảm ơn trước ạ.
Cho phương trình : x\(^2\) - 2mx + 2m - 7 = 0 (1) ( m là tham số )
a) Giải phương trình (1) khi m = 1
b) Tìm m để x = 3 là nghiệm của phương trình (1). Tính nghiệm còn lại.
c) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x\(_1\), x\(_2\). Tìm m để
x\(_1\)\(^2\) + x\(_2\)\(^2\) = 13
d) Gọi x\(_1\),x\(_2\) là hai nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức
x\(_1\)\(^2\) + x\(_2\)\(^2\) + x\(_1\)x\(_2\).
Giải giúp mình với ạ
Bài 2: Gọi x1, x2 là hai nghiệm của phương trình: x2 + x - 2 + √2 = 0. Không giải phương trình, tính các giá trị của các biểu thức sau:
A = \(\dfrac{1}{x_1}\)+ \(\dfrac{1}{x_2}\) B = x12 + x22
Cho pt : x\(^2\) - x -2m - 10 =0 (1)
a) Xác định m để pt (1) có nghiệm. Gọi các nghiệm của pt (1) là x\(_1\),x\(_2\). Tìm m để
x\(_1\)\(^2\) + x\(_1\) - x\(_2\) = 8
b) Xác định m để ( x\(_1\) - x\(_2\) )\(^2\) + x\(_1\) - 2x\(_2\) = 32
Cho phương trình bậc hai: x 2 – 5x – 2 = 0. Không giải phương trình để tìm 2 nghiệmx1 ; x2 . Hãy tính giá trị của biểu thức: A =\(\dfrac{x1-1}{x2-1}+\dfrac{x2-1}{x1-1}\)
Cho pt: x2 - 2(m - 1)x + m + 1 = 0
Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
Cho phương trình (lần x) x²-2(m-2) x+m² =0 (1) (m là tham số) 1: tìm m để phương trình (1) có nghiệm 2: Trong trường hợp phương trình (1) có nghiệm. Gọi x1, x2 là hai nghiệm của phương trình (1) a: dùng định lí Vi-Ét hãy tính x1+x2 và x1.x2 theo m b: tìm m để x1.x2-(x1+x2)-2=0
1.cho phương trình \(x^2+5x+m-2=0\) (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn hệ thức
\(\dfrac{1}{ \left( x_1-1\right)^2}+\dfrac{1}{\left(x_2-1\right)^2}=1\)