\(R=d\left(I;\left(Oxy\right)\right)=\left|z_I\right|=3\)
Phương trình:
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=9\)
\(R=d\left(I;\left(Oxy\right)\right)=\left|z_I\right|=3\)
Phương trình:
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=9\)
viết phương trình mặt cầu (S) có tâm I (3;-4;2) và tiếp xúc với mặt phẳng Oxy
viết phương trình mặt cầu (S) có tâm I (3;-4;2) và tiếp xúc với mặt phẳng OXY
viết phương trình mặt cầu S qua ba điểm A(2;0;1), B(1;3;2), C(3;2;0) có tâm nằm trong mặt phẳng xOy
AI GIẢI TRÌNH BÀYCHI TIẾT VÀ LÀM XONG TRƯỚC SẼ ĐƯỢC TICK NHIỀU NHÉ
Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có A(-1;2). Gọi M, N lần lượt là trung điểm của cạnh AD và DC ; K là giao điểm của BN với CM. Viết phương trình đường tròn ngoại tiếp tam giác BMK, biết BN có phương trình \(2x+y-8=0\) và điểm B có hoành độ lớn hơn 2
Lập phương trình mặt cầu (S), biết S đi qua C (2; -4; 3) và đi qua các hình chiếu của C lên
a) 3 trục toạ độ
b) 3 mặt phẳng toạ độ
Trong không gianOxyz, cho mặt cầu (S): x2+y2+(z+1)2 =5. Có tất cả bao nhiêuđiểm A(a;b;c), (với a,b,c là các số nguyên) thuộc mặt phẳng (Oxy) sao cho có ít nhất hai tiếp tuyến của (S) đi qua A và hai tiếp tuyến đó vuông góc với nhau?
Trong không gian Oxyz , cho mặt cầu (S): x2+y2+z2-2x-2y-7=0 và điểm M(2;01).Mặt phẳng (P) thay đổi đi qua M và cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng r . Khi r đạt giá trị nhỏ nhất, khoảng cách từ O đến mặt phẳng (P) bằng
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 0;0;4 ,B 2;0;0 v{ mặt phẳng P :2x y z 5 0 . Lập ph ng trình mặt cầu S đi qua O A B v{ có khoảng c|ch từ t}m I của mặt cầu đến mặt phẳng P bằng 5 6
Cho phương trình mặt cầu (S): x^2+y^2+z^2=9, điểm M(1;1;2) và mặt phẳng (P): x+y+z-4=0. Đường thẳng d có vecto chỉ phương (1;a;b) biết đường thẳng d đi qua M, đường thẳng d nằm trong (P) và đường thẳng d cắt mặt cầu (S) tại 2 điểm A và B sao cho độ dài đoạn AB là nhỏ nhất. Tính a-b?