Phương trình \(\cos x=m-4\) khi và chỉ khi \(-1\le m-4\le1\) \(\Leftrightarrow3\le m\le5\)
Phương trình \(\cos x=m-4\) khi và chỉ khi \(-1\le m-4\le1\) \(\Leftrightarrow3\le m\le5\)
1) cho đồ thị (H) y=\(\dfrac{x+2}{x-1}\)và điểm M \(\in\)(H) có tung độ 4. Phương trình tiếp tuyến của (H) tại điểm M có dạng y=ax+b, khi đó b-a2 bằng
A. 6 B.19
C.1 D. -1
Tìm nghiệm \(x\in\left(0;10\pi\right)\) của phương trình
\(\dfrac{\sqrt{3}}{cos^2x}-tanx-2\sqrt{3}=sinx\left(1+tanx.tan\dfrac{x}{2}\right).\)
Tìm các giá trị của tham số m để phương trình: \(\frac{\sin^6x+\cos^6x}{\tan\left(x+\frac{\pi}{4}\right)\tan\left(x-\frac{\pi}{4}\right)}=m\) có nghiệm
Tìm m để bất phương trình sau nghiệm đúng với mọi x thuộc \([0;4]\): \(\sqrt{x}+\sqrt{4-x}\le\sqrt{4x-x^2+m+3}\)
1.giải pt \(\left(1+\tan x\right)\cos^3x+\left(1+\cot x\right)\sin^3x=\sqrt{2\sin2x}\)
2.tìm các nghiệm trong khoảng \(\left(-\pi;\pi\right)\) của phương trình
\(2\sin\left(3x+\frac{\pi}{4}\right)=\sqrt{1+8\sin2x\cos^22x}\)
Giải các phương trình :
a) \(1+\sin x-\cos x=0\)
b) \(\cos^4x+\sin^4x=1\)
Giải các phương trình :
a) \(\sin2x=\cos^4\dfrac{x}{2}-\sin^4\dfrac{x}{2}\)
b) \(3\sin5x-2\cos5x=3\)
c) \(\cos\left(\dfrac{\pi}{2}+5x\right)+\sin x=2\cos3x\)
d) \(\sin2z+\cos2z=\sqrt{2}\sin3z\)
Chứng minh phương trình
a) \(2x^3-6x+1=0\) có 2 nghiệm
b) \(cos\left(x\right)=x\) có nghiệm
Giải các phương trình :
a) \(\cos^2x+\cos^22x-\cos^23x-\cos^24x=0\)
b) \(\cos4x\cos\left(\pi+2x\right)-\sin2x\cos\left(\dfrac{\pi}{2}-4x\right)=\dfrac{\sqrt{2}}{2}\sin4x\)
c) \(\tan\left(120^0+3x\right)-\tan\left(140^0-x\right)=2\sin\left(80^0+2x\right)\)
d) \(\tan^2\dfrac{x}{2}+\sin^2\dfrac{x}{2}\tan\dfrac{x}{2}+\cos^2\dfrac{x}{2}+\cot^2\dfrac{x}{2}+\sin x=4\)
e) \(\dfrac{\sin2t+2\cos^2t-1}{\cot t-\cot3t+\sin3t-\sin t}=\cos t\)