\(x^2-4y^2+2x+4y\)
\(=\left(x+2y\right)\left(x-2y\right)+2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+2\right)\)
\(x^2-4y^2+2x+4y\)
\(=\left(x+2y\right)\left(x-2y\right)+2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+2\right)\)
a, -x2 + 2x + 3
b, x2 - 2x + 4y2 - 4y + 8 c, -x2 - y2 + xy + 2x + 2y + 4 d, x2 + 5y2 - 4xy - 2y + 2015 e, 2x2 + y2 + 6x + 2y + 2xy + 20184/ Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tö:
a) x2 - y2 - 2x + 2y b)2x + 2y - x2 - xy
c) 3a2 - 6ab + 3b2 - 12c2 d)x2 - 25 + y2 + 2xy
e) a2 + 2ab + b2 - ac - bc f)x2 - 2x - 4y2 - 4y g) x2y - x3 - 9y + 9x h)x2(x-1) + 16(1- x)
n) 81x2 - 6yz - 9y2 - z2 m)xz-yz-x2+2xy-y2 p) x2 + 8x + 15 k) x2 - x - 12
l) 81x2 + 4
Phân tích đa thức thành nhân tử.
a, (x-3)^2-(5-2x)^2
b, (x+y)^2 -x^2 +4xy - 4y^2
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
Bài tập 1: Phân tích đa thức thành nhân tử
1. x2 + 3xy + 2y2 + 3xz + 5yz + 2z2
2. x2 – 8xy + 15y2 + 2x – 4y – 3
3. x4 – 13x2 + 36
4. x4 + 3x2 – 2x + 3
5. x4 + 2x3 + 3x2 + 2x + 1
X^2-4y^2-2x-4y
Bài 1: Giải các bất phương trình sau
a) x+1/x+3 > 1
b) 2x-1/x-3 ≤ 2
c) x2+2x+2/x2+3 ≥ 1
d) 2x+1/x2+2 ≥ 1