(x+3)(x-1)(x+1)(x-3)+15
Đặt A=(x+3)(x-1)(x+1)(x-3)+15
=(x+3)(x-3)(x-1)(x+1)+15
=(x2-9)(x2-1)+15
Đặt a=x2-9 \(\Rightarrow\) x2-1=a+8
Khi đó, ta có: A=a(a+8)+15
=a2+8a+15
=a2+3a+5a+15
=a(a+3)+5(a+3)
=(a+3)(a+5)
Thay a=x2-9 vào A, ta có:
A=(x2-9+3)(x2-9+5)
=(x2-6)(x2-4)
=(x-\(\sqrt{6}\))(x+\(\sqrt{6}\))(x-2)(x+2)