a)
= ( x\(\sqrt{x}\) - x ) + ( \(\sqrt{x}\) -1 )
= x(\(\sqrt{x}\) - 1) + ( \(\sqrt{x}\) -1 )
= (\(\sqrt{x}-1\) ).( x + 1)
= ( \(\sqrt{x}-1\) ).\(\left(\sqrt{x}+1\right).\left(x-\sqrt{x}+1\right)\)
b) = x - 1 - 2\(\sqrt{x-1}\) + 1 - 3
= [ ( x - 1) - 2\(\sqrt{x-1}\) + 1 ] - 3
= \(\left(\sqrt{x-1}-1\right)^2\) - 3
= [ \(\left(\sqrt{x-1}-1\right)+\sqrt{3}\) ] . [ \(\left(\sqrt{x}-1\right)-\sqrt{3}\) ]
= \(\left(\sqrt{x-1}-1+\sqrt{3}\right).\left(\sqrt{x}-1-\sqrt{3}\right)\)
a) \(x\sqrt{x}+\sqrt{x}-x-1=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)=x\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{x}-1\right)\left(x+1\right)\)
b) \(x-2\sqrt{x-1}-3=x-1-2\sqrt{x-1}+1-3=\left(\sqrt{x}-1\right)^2-3=\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)\)