a) (x2y-4)2+4(x2+y)2
= x4y2-8x2y+16+4(x4+2x2y+y2)
= x4y2-8x2y+16+4x4+8x2y+4y2
= x4y2+4x4+4y2+16
= x4(y2+4)+4(Y2+4)
= (Y2+4)(x4+4)
a) (x2y-4)2+4(x2+y)2
= x4y2-8x2y+16+4(x4+2x2y+y2)
= x4y2-8x2y+16+4x4+8x2y+4y2
= x4y2+4x4+4y2+16
= x4(y2+4)+4(Y2+4)
= (Y2+4)(x4+4)
Phân tích các đa thức sau thành nhân tử :
a) \(a^2-b^2-4a+4\)
b) \(x^2+2x-3\)
c) \(4x^2y^2-\left(x^2+y^2\right)^2\)
d) \(2a^3-54b^3\)
Rút gọn:
\(A=\left[\dfrac{x+3}{\left(x-3\right)^2}+\dfrac{6}{x^2-9}-\dfrac{x-3}{\left(x+3\right)^2}\right]\left[1:\left(\dfrac{24x^2}{x^4-81}-\dfrac{12}{x^2+9}\right)\right]\)
\(B=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left[\left(x-2\right)+\dfrac{10-x^2}{x+2}\right]\)
Gpt:
a.\(\left(x^2-4x+3\right)^3+\left(x^2-7x+6\right)^3=\left(2x^2-11x+9\right)^3\)
b.\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2=0\)
Câu 1: các biểu thức sau không phụ thuộc vào biến đúng hay sai:
\(A.2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)
B. \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
C. \(3x\left(x-2\right)-5x\left(x-1\right)-8\left(x^2-3\right)\)
D. \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)
* Trình bày cách làm
Tìm GTNN của các biểu thức:
a) \(A=\left(x+8\right)^4+\left(x+6\right)^4\)
b) \(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
c) \(C=\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)
d) \(D=x^4-2x^3+3x^2-2x+1\)
e) E = \(x^4-6x^3+10x^2-6x+9\)
g) \(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Phân tích đa thức thành nhân tử :
A = \(x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)
B = \(x^2.\left(y-z\right)+y^2.\left(z-x\right)+z^2.\left(x-y\right)\)
Câu 1: Biết \(3x+2\left(5-x\right)=0\), giá trị của x là:
Câu 2: Giá trị của x thỏa mãn: \(2x.\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) là:
Câu 3: Tính: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) bằng:
Câu 4: Tính và thu gọn: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)
Câu 5: Biểu thức rút gọn và khai triển của R=\(\left(2x-3\right).\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\) là:
Câu 1: Biểu thức rút gọn của: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\) là:
Câu 2: Cho A=\(3.\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)\) để có giá trị bằng 0 thì x bằng:
Câu 3: Tìm x biết: \(\left(5x-3\right)\left(7x+2\right)-35x\left(x-1\right)=42\)
Câu 4: Tìm x biết: \(\left(3x+5\right)\left(2x-1\right)+\left(5-6x\right)\left(x+2\right)=x\)
Câu 5: Giá trị của biểu thức A=\(\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) với x=1;y=1,z=-1
Câu 6: Giá trị của x thỏa mãn \(\left(10x+9\right).x-\left(5x-1\right)\left(2x+3\right)=8\)
Caau 7: Giá trị x thỏa mãn: \(x\left(x+1\right)\left(x+6\right)-x^3=5x\) là:
Bài 1 : rút gọn các biểu thức sau
A = \(\left(3x+1\right)^2-2\left(3x+1\right)\left(5x+5\right)+\left(5x+5\right)^2\)
B = \(\left(a+b+c\right)^2\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-b-a\right)^2\)
C = \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Bài 2 : chứng minh các biểu thức sau không phụ thuộc vào biến x và y
A = \(\left(2x-1\right)\left(x^2+x-1\right)-\left(x-5\right)^2-2\left(x+1\right)\left(x^2-x+1\right)-7\left(x-2\right)\)