c, \(x^2\) + 5x + 6
= \(x^2\) + 2x + 3x +6
= (\(x^2\) + 2x) + (3x + 6)
= x(x + 2) + 3(x + 2)
= (x + 2)(x + 3)
b, \(2x^3y-2xy^3-4xy^2-2xy\)
= 2xy(\(x^2\) - \(y^2\) - \(2y\) - 1)
= 2xy(\(x^2-\left(y^2+2y+1\right)\))
= 2xy(\(x^2\) \(-\left(y+1\right)^2\))
= 2xy(\(x^2-y-1\))(\(x^2+y+1\))
c, \(3x^2+6xy+3y^2-12\)
= 3(\(x^2+2xy+y^2-4\))
= 3(\(x^2+2xy+y^2\))\(-4\)
= 3(\(\left(x+y\right)^2\)\(-4\))
= 3\(\left(x+y+2\right)\left(x+y-2\right)\)