a) Đăt \(x^2+x=t\) khi đó bt trở thành:
\(t^2-2t-15=t^2+3t-5t-15=t\left(t+3\right)-5\left(t+3\right)\\ =\left(t+3\right)\left(1-5\right)=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
C) \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+11=t\) thì bt trở thành
\(\left(t-4\right)\left(t+4\right)+15\)
\(=t^2-16+15=t^2-t-15t+15=t\left(t-1\right)-15\left(t-1\right)\)
\(=\left(t-1\right)\left(t-15\right)=\left(x^2+8x+11-1\right)\left(x^2+8x+11-15\right)\\ =\left(x^2+8x+10\right)\left(x^2+8x-4\right)\)