Giả sử ta có hình chữ nhật ABCD nội tiếp đường tròn tâm (O).
Suy ra bán kính đường tròn là OC, đường kính AC.
Hình chữ nhật ABCD có chiều dài AB = 8cm, chiều rộng BC = 6cm. Áp dụng định lý Pytago trong tam giác vuông ABC có:
\(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{8^2} + {6^2}} = 10cm.\)
Do đó \(R = OC = \frac{{AC}}{2} = \frac{{10}}{2} = 5cm.\)
Diện tích hình tròn là: \(\pi {R^2} = \pi {.5^2} = 25\pi (c{m^2}).\)
Diện tích hình chữ nhật là: \(8.6 = 48(c{m^2}).\)
Diện tích phần tô màu đỏ là: \(25\pi - 48 \approx 30,5(c{m^2})\) (với \(\pi \approx 3,14\)).
Đúng 0
Bình luận (0)