Bài 5. Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Người ta định đào một cái hầm có dạng hình chóp cụt tứ giác đều có hai cạnh đáy là 14 m và 10 m. Mặt bên tạo với đáy nhỏ thành một góc nhị diện có số đo bằng 135°. Tính số mét khối đất cần phải di chuyển ra khỏi hầm.

Bùi Nguyên Khải
22 tháng 9 2023 lúc 15:21

tham khảo:

Bài tập 5 trang 85 Toán 11 tập 2 Chân trời

Mô hình hoá cái hầm bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy. Vậy \(AB = 14,A'B' = 10\).

Gọi \(M,M'\) lần lượt là trung điểm của \(CD,C'D'\).

\(A'B'C'{\rm{D}}'\) là hình vuông \( \Rightarrow O'M' \bot C'{\rm{D}}'\)

\(CDD'C'\) là hình thang cân \( \Rightarrow MM' \bot C'D'\)

Vậy \(\widehat {MM'O'}\) là góc nhị diện giữa mặt bên và đáy nhỏ.

\( \Rightarrow \widehat {MM'O'} = {135^ \circ } \Rightarrow \widehat {M'MO} = {180^ \circ } - \widehat {MM'O'} = {45^ \circ }\)

Kẻ \(M'H \bot OM\left( {H \in OM} \right)\)

\(OMM'O'\) là hình chữ nhật

\( \Rightarrow OH = O'M' = 5,MH = OM - OH = 2,M'H = OO' = MH.\tan {45^ \circ } = 2\)

Diện tích đáy lớn là: \(S = A{B^2} = {14^2} = 196\left( {{m^2}} \right)\)

Diện tích đáy bé là: \(S' = A'B{'^2} = {10^2} = 100\left( {{m^2}} \right)\)

Số mét khối đất cần phải di chuyển ra khỏi hầm là:

\(V = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right) = \frac{1}{3}.2\left( {196 + \sqrt {196.100}  + 100} \right) = \frac{{872}}{3} \approx 290,67\left( {{m^3}} \right)\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết