Bài 5. Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Giải mục 1 trang 82, 83 (SGK Chân trời sáng tạo)

Hướng dẫn giải

THAM KHẢO

a) Nếu a⊥(P) thì a vuông góc với mọi đường thẳng thuộc (P)

Góc giữa a và một đường thẳng b tuỳ ý trong (P) là \(90^0\)

b) (a,a′)=α

Khám phá 1 trang 82 Toán 11 tập 2 Chân trời

(Trả lời bởi Bùi Nguyên Khải)
Thảo luận (1)

Giải mục 1 trang 82, 83 (SGK Chân trời sáng tạo)

Hướng dẫn giải

THAM KHẢO:

Thực hành 1 trang 83 Toán 11 tập 2 Chân trời

a) Vì AA′⊥(ABCD) nên góc giữa đường thẳng AA' và (ABCD) là \(90^0\)

b) CC′⊥(ABCD) nên C là hình chiếu vuông góc của C' lên (ABCD).

Suy ra góc giữa BC' và (ABCD) là \(\widehat{C'BC}\)=\(45^O\) (Vì BCC'C' là hình vuông)

c) Gọi cạnh của hình lập phương là a

Ta có: AC=\(a\sqrt{2}\),tan \(\widehat{ACA'}\)=\(\dfrac{1}{\sqrt{2}}\) nên \(\widehat{ACA'}\)=\(35^O\)

AA′⊥(ABCD) nên A là hình chiếu vuông góc của A' lên (ABCD)

Suy ra góc giữa A'C và (ABCD) là \(\widehat{ACA'}\)=\(35^O\)

(Trả lời bởi Bùi Nguyên Khải)
Thảo luận (1)

Giải mục 1 trang 82, 83 (SGK Chân trời sáng tạo)

Hướng dẫn giải

\(DK \bot \left( {ABHK} \right) \Rightarrow \left( {B{\rm{D}},\left( {ABHK} \right)} \right) = \left( {B{\rm{D}},BK} \right) = \widehat {DBK}\)

\(DK = CH = 2,AK = \sqrt {A{{\rm{D}}^2} - D{K^2}}  = \frac{{\sqrt {33} }}{2},KB = \sqrt {A{K^2} + A{B^2}}  = \frac{{\sqrt {37} }}{2}\)

\(\tan \widehat {DBK} = \frac{{DK}}{{KB}} = \frac{4}{{\sqrt {37} }} \Rightarrow \widehat {DBK} \approx 33,{3^ \circ }\)

Vậy góc giữa đường thẳng \(BD\) và đáy hồ bằng \(33,{3^ \circ }\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 2 trang 84, 85 (SGK Chân trời sáng tạo)

Hướng dẫn giải

THAM KHẢO:

Các nửa mặt phẳng chia không gian thành 4 phần

(Trả lời bởi Bùi Nguyên Khải)
Thảo luận (2)

Giải mục 2 trang 84, 85 (SGK Chân trời sáng tạo)

Hướng dẫn giải

a: \(d\perp Ox;d\perp Oy\)

=>\(d\perp\left(Ox,Oy\right)\)

b: Số đo của \(\widehat{xOy}\) sẽ không đổi khi O di chuyển trên d

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (2)

Giải mục 2 trang 84, 85 (SGK Chân trời sáng tạo)

Hướng dẫn giải

a) `[S,BC,O]`:

Góc phẳng nhị diện `[S,BC,O`] là góc giữa mặt phẳng `(SBC)` và mặt phẳng `(SBO)`. Vì hình chóp tứ giác đều, nên mặt phẳng `(SBC)` và mặt phẳng `(SBO)` là hai mặt phẳng vuông góc với nhau. Do đó, góc phẳng nhị diện `[S,BC,O]` là góc vuông.

b) `[C,SO,B]`:
Góc phẳng nhị diện `[C,SO,B]` là góc giữa mặt phẳng `(CSO)` và mặt phẳng `(CSB)`. Vì hình chóp tứ giác đều, nên mặt phẳng `(CSO)` và mặt phẳng `(CSB)` là hai mặt phẳng vuông góc với nhau. Do đó, góc phẳng nhị diện` [C,SO,B]` là góc vuông.

(Trả lời bởi HaNa)
Thảo luận (1)

Giải mục 2 trang 84, 85 (SGK Chân trời sáng tạo)

Hướng dẫn giải

THAM KHẢO:

Vận dụng 2 trang 85 Toán 11 tập 2 Chân trời

Kẻ SM⊥BC

Mà BC⊥SO nên BC⊥(SOM). Suy ra BC⊥OM

Do đó góc nhị diện tạo bởi mặt bên và mặt đáy là \(\widehat{SMO}\)

Ta có: SO=98;OM=\(\dfrac{1}{2}\).180=90

tan \(\widehat{SMO}\)=\(\dfrac{SO}{OM}\)=1,1. Suy ra \(\widehat{SMO}\)=\(47,4^O\)

Vậy góc nhị diện tạo bởi mặt bên và mặt đáy là \(^{47,4^O}\)

(Trả lời bởi Bùi Nguyên Khải)
Thảo luận (1)

Bài 1 trang 85 (SGK Chân trời sáng tạo)

Hướng dẫn giải

a) Góc giữa đường thẳng AB và mặt phẳng $(BCD)$ là góc giữa đường thẳng AB và một đường thẳng nằm trên mặt phẳng $(BCD)$ và // $BC$ hoặc $CD$. Vì ABCD là tứ diện đều, nên các cạnh của nó đều song song và bằng nhau.

=> AB//CD

Vậy góc giữa đường thẳng AB và mặt phẳng (BCD) là góc vuông.

b) Góc phẳng nhị diện [A,CD,B] là góc giữa mặt phẳng $(ACD)$ và mặt phẳng $(BCD)$. Vì $ABCD$ là tứ diện đều, nên mặt phẳng `(ACD)` ⊥ mặt phẳng $(BCD)$.

Do đó, góc phẳng nhị diện$ [A,CD,B] $là góc vuông.

Tương tự, góc phẳng nhị diện $[A,CD,E] $cũng là góc vuông.

(Trả lời bởi HaNa)
Thảo luận (1)

Bài 2 trang 85 (SGK Chân trời sáng tạo)

Bài 3 trang 85 (SGK Chân trời sáng tạo)

Hướng dẫn giải

a) Kẻ \(C'H \bot OC\left( {H \in OC} \right)\)

 là hình chữ nhật \( \Rightarrow OH = O'C' = a,OO'\parallel C'H\)

Mà \(OO' \bot \left( {ABCDEF} \right)\)

\(\begin{array}{l} \Rightarrow C'H \bot \left( {ABCDEF} \right)\\ \Rightarrow \left( {CC',\left( {ABCDEF} \right)} \right) = \left( {CC',CH} \right) = \widehat {C'CH}\end{array}\)

\(\begin{array}{l}HC = OC - O'C' = \frac{a}{2},C'H = OO' = a\\ \Rightarrow \tan \widehat {C'CH} = \frac{{C'H}}{{HC}} = 2 \Rightarrow \widehat {C'CH} \approx 63,{4^ \circ }\end{array}\)

Vậy \(\left( {CC',\left( {ABCDEF} \right)} \right) \approx 63,{4^ \circ }\)

b) Gọi \(M,M'\) lần lượt là trung điểm của \(AB,A'B'\).

\( \Rightarrow OM \bot AB,O'M' \bot A'B'\)

\(ABB'A'\) là hình thang cân \( \Rightarrow MM' \bot AB,MM' \bot A'B'\)

\( \Rightarrow \left[ {O,AB,A'} \right] = \widehat {OMM'},\left[ {O',A'B',A} \right] = \widehat {O'M'M}\)

Kẻ \(M'K \bot OM\left( {K \in OM} \right)\)

\(OO'M'K\) là hình chữ nhật \( \Rightarrow OK = O'K' = \frac{{A'B'\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{4},OO' = M'K = a\)

\(\begin{array}{l}OM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2},MK = OM - OK = \frac{{a\sqrt 3 }}{4}\\ \Rightarrow \tan \widehat {OMM'} = \frac{{M'K}}{{MK}} = \frac{4}{{\sqrt 3 }} \Rightarrow \widehat {OMM'} \approx 66,{6^ \circ }\\ \Rightarrow \widehat {O'M'M} = {180^ \circ } - \widehat {OMM'} = 113,{4^ \circ }\end{array}\)

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)