C (sử dụng tính chất dãy tỉ số bằng nhau)
C (sử dụng tính chất dãy tỉ số bằng nhau)
cho a+b+c+d khác 0 vàti\(\dfrac{b+c+d-a}{a}=\dfrac{c+d+a-b}{b}=\dfrac{d+a+b-c}{c}=\dfrac{a+b+c-d}{d}P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{c}{d}\right)\left(1+\dfrac{a}{d}\right)\)tính P
giúp mk với ạ , xin cảm ơn
cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
CMR : \(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}\right)^2\) = \(\dfrac{a}{d}\)
Cho dãy tỉ số bằng nhau:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
Tính : \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Cho dãy tỉ số bằng nhau :
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}\)
Tìm giá trị của biểu thức
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
1. cho \(\dfrac{a}{b}\) = \(\dfrac{d}{c}\)
a) \(\dfrac{a+b}{b}\) = \(\dfrac{c+d}{d}\)
b) \(\dfrac{a}{a-b}\) = \(\dfrac{c}{c-d}\)
c) \(\dfrac{2a-5b}{2c-5d}\) = \(\dfrac{3a+4b}{3c+4d}\)
d) \(\dfrac{a^2-c^2}{b^2-d^2}\) = \(\dfrac{ac}{bd}\)
HELP ME !!! MK SẼ TICK CHO
\(A=\dfrac{a}{b+c}=\dfrac{c}{a+c}=\dfrac{b}{a+c}vàA=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}chứngminh(\dfrac{a+b+c}{b+c+d})^2=(\dfrac{a+b+c}{b+c+a})^2\)
Cho ad = bc và a, b, c, d khác 0. Chứng tỏ rằng:
a) \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) b) \(\dfrac{a+c}{b+d}\) = \(\dfrac{a}{b}\) c) \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\) d) \(\dfrac{a+b}{b}\) = \(\dfrac{c+d}{d}\) e) \(\dfrac{2a+b}{2c+d}\) = \(\dfrac{a}{c}\)
cho tỉ lệ thức\(\dfrac{a}{b}=\dfrac{c}{d}\)
(a,b,c,d khác 0)
chứng tỏ rằng
bài 1 \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
bài 2 \(\dfrac{2a+c}{3a-c}=\dfrac{2b+d}{3b-d}\)
bài 3\(\dfrac{5a-2c}{3a-4c}=\dfrac{5b-2d}{3b-4d}\)
nhanh nha gấp lắm ạ
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\). C/m : \((\dfrac{a+b+c}{b+c+d})^3=\dfrac{a}{d}\)