Lời giải:
Ta có:
\(M=x^2-5x+y^2+xy-4y+2014\)
\(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2014-M)=0\)
Coi đây là pt bậc 2 ẩn $x$. Vì pt xác định nên:
\(\Delta=(y-5)^2-4(y^2-4y+2014-M)\geq 0\)
\(\Leftrightarrow 4M\geq 3y^2-6y+8031\)
Mà \(3y^2-6y+8031=3(y-1)^2+8028\geq 8028\)
\(\Rightarrow 4M\geq 8028\Leftrightarrow M\geq 2007\)
Vậy $M_{\min}=2007$ khi $y-1=0$ hay $y=1$ kéo theo $x=2$