Một thau bằng nhôm có khối lượng 0,5kg đựng 2 lít nước ở 200C.
a) Thả vào thau nhôm một thỏi đồng có khối lượng 200g lấy ở lò ra thấy thau nước nóng lên đến 21,20C. Tìm nhiệt độ của thỏi đồng. Bỏ qua sự trao đổi nhệt ra ngoài môi trường. Biết nhiệt dung riêng của nước, nhôm, đồng lần lượt là 4200J/kg.K; 880J/kg.K; 380J/kg.K
b) Thực ra trong trường hợp này nhiệt lượng tỏa ra môi trường ngoài bằng 10 phần trăm nhiệt lượng cung cấp cho thau nước. Tìm nhiệt lượng thực sự bếp cung cấp và nhiệt độ của thỏi đồng?
c) Nếu tiếp tục bỏ vào thau nước một thỏi nước đá có khối lượng 100g ở 00C. Nước đá có tan không? Tìm nhiệt độ cuối cùng của hệ thống hoặc nước đá còn sót lại không tan hết? Biết cứ 1kg nước đá nóng chảy hoàn toàn thành nước ở 00C phải cung cấp cho nó một lượng nhiệt là 3,4.105J.
a) Nhiệt độ của bếp lò: ( t0C cũng là nhiệt độ ban đầu của thỏi đồng)
Nhiệt lượng của thau nhôm nhận được để tăng nhiệt độ từ t1= 200C lên t2 = 21,20C:
Q1 = m1.c1(t2 - t1)
Nhiệt lượng của nước nhận được để tăng nhiệt độ từ t1= 200C lên t2 = 21,20C:
Q2 = m2.c2(t2 - t1)
Nhiệt lượng của thỏi đồng toả ra để hạ nhiệt độ từ t0C xuống t2 = 21,20C:
Q3 = m3.c3(t – t2)
Vì không có sự toả nhiệt ra môi trường nên theo phương trình cân bằng nhiệt ta có:
Q3 = Q1 + Q2 => m3.c3(t - t2) = m1.c1(t2 - t1) + m2.c2(t2 - t1)
=> t = [(m1.c1+ m2.c2) (t2 - t1) / m3.c3] + t2
thế số ta tính được t = 160,780C
b) Nhiệt độ thực của bếp lò(t’):
Theo giả thiết ta có: Q’3 - 10% ( Q1+ Q2 ) = ( Q1+ Q2 )
ð Q’3 = 1,1 ( Q1+ Q2 )
ð m3.c3(t’ - t2) = 1,1 (m1.c1+ m2.c2) (t2 - t1)
ð t’ = [ 1,1 (m1.c1+ m2.c2) (t2 - t1) ] / m3.c3 }+ t2
Thay số ta tính được t’ = 174,740C
c) Nhiệt độ cuối cùng của hệ thống:
+ Nhiệt lượng thỏi nước đá thu vào để nóng chảy hồn tồn ở 00C:
Q = 3,4.105.0,1 = 34000(J)
+ Nhiệt lượng cả hệ thống (thau, nước, thỏi đồng) toả ra khi hạ 21,20C xuống 00C:
Q’ = (m1.c1+ m2.c2 + m3.c3 ) (21,20C - 00C) = 189019,2(J) + So sánh ta có: Q’ > Q nên nhiệt lượng toả ra Q’ một phần làm cho thỏi nước đá tan hồn
tồn ở 00 C và phần còn lại (Q’-Q) làm cho cả hệ thống ( bao gồm cả nước đá đã tan) tăng nhiệt độ từ 00C lên nhiệt độ t”0C.
+ (Q’-Q) = [m1.c1+ (m2 + m)c2 + m3.c3 ] (t”- 0)
=> t” = (Q’-Q) / [m1.c1+ (m2 + m)c2 + m3.c3 ]
thay số và tính được t” = 16,60C.