Đường thẳng song song với đường thẳng \(y = 2x\) và cắt trục tung tại điểm có tung độ bằng 1 là:
A. \(y = 2x - 1\). B. \(y = - 2x - 1\). C. \(y = 2x + 1\). D. \(y = 6 - 2\left( {1 - x} \right)\).
Cho hai đường thẳng \(y = \dfrac{1}{2}x + 3\) và \(y = - \dfrac{1}{2}x + 3\). Hai đường thẳng đã cho
A. Cắt nhau tại điểm có hoành độ là 3.
B. Song song với nhau.
C. Cắt nhau tại điểm có tung độ là 3.
D. trùng nhau.
Tìm \(m\) để các hàm số bậc nhất \(y = 2mx - 2\) và hàm số \(y = 6x + 3\) có đồ thị là những đường thẳng song song với nhau.
Cho hàm số \(y = f\left( x \right) = - {x^2} + 1\). Tính \(f\left( { - 3} \right);f\left( { - 2} \right);f\left( { - 1} \right);f\left( 0 \right);f\left( 1 \right)\).
Cho các hàm số bậc nhất: \(y = \dfrac{1}{3}x + 2\); \(y = - \dfrac{1}{3}x + 2\);\(y = - 3x + 2\). Kết luận nào sau đây đúng?
A. Đồ thị của các hàm số trên là các đường thẳng song song với nhau.
B. Đồ thị của các hàm số trên là các đường thẳng đi qua gốc tọa độ.
C. Đồ thị của các hàm số trên là các đường thẳng trùng nhau.
D. Đồ thị của các hàm số trên là các đường thẳng cắt nhau tại một điểm.
Cho hai hàm số \(y = x + 3\), \(y = - x + 3\) có đồ thị lần lượt là các đường thẳng \({d_1}\) và \({d_2}\).
c) Tính chu vi và diện tích của tam giác \(ABC\).
Trong các điểm sau, điểm nào thuộc đồ thị của hàm số \(y = 2 - 4x\)?
A. \(\left( {1;1} \right)\). B. \(\left( {2;0} \right)\). C. \(\left( {1; - 1} \right)\). D. \(\left( {1; - 2} \right)\).
Một người đi bộ với tốc độ không đổi 3\(km/h\). Gọi \(s\left( {km} \right)\) là quãng đường đi được trong \(t\) (giờ).
a) Lập công thức tính \(s\) theo \(t\).
b) Vẽ đồ thị của hàm số \(s\) theo biến số \(t\).
Trong các điểm sau, điểm nào thuộc đồ thị của hàm số \(y = - 5x + 5\)?
A. \(\left( {1;1} \right)\). B. \(\left( {2;0} \right)\). C. \(\left( {0;4} \right)\). D. \(\left( {2; - 5} \right)\).