Vì \(Ox \bot Oy\) tại \(O\)nên tam giác \(AOB\) và tam giác \(AOC\) đều vuông tại \(O\).
Ta có: \(OA = 3;OB = 3;OC = 3\)
\(BC = OB + OC = 3 + 3 = 6\).
Áp dụng định lí Py – ta – go cho tam giác \(AOB\) ta có:
\(O{A^2} + O{B^2} = A{B^2}\)
\( \Leftrightarrow {3^2} + {3^2} = A{B^2}\)
\( \Leftrightarrow A{B^2} = 9 + 9 = 18\)
\( \Leftrightarrow AB = \sqrt {18} = 3\sqrt 2 \)
Áp dụng định lí Py – ta – go cho tam giác \(AOC\) ta có:
\(O{A^2} + O{C^2} = A{C^2}\)
\( \Leftrightarrow {3^2} + {3^2} = A{C^2}\)
\( \Leftrightarrow A{C^2} = 9 + 9 = 18\)
\( \Leftrightarrow AC = \sqrt {18} = 3\sqrt 2 \)
Chu vi tam giác \(ABC\) là:
\(C = AB + AC + BC = 3\sqrt 2 + 3\sqrt 2 + 6 = 6 + 6\sqrt 2 \) (đơn vị độ dài)
Vì \(Ox \bot Oy\) nên \(OA\) vuông góc với \(BC\) tại \(O\). Do đó, \(OA\) là đường cao tam giác \(ABC\) ứng với cạnh \(BC\).
Diện tích tam giác \(ABC\) là:
\(S = \dfrac{1}{2}OA.BC = \dfrac{1}{2}.3.6 = 9\) (đơn vị diện tích)
Vậy chu vi tam giác \(ABC\) là \(6 + 6\sqrt 2 \) đơn vị độ dài và diện tích tam giác \(ABC\) là 9 đơn vị diện tích.