Gọi \({\alpha _1};{\alpha _2}\) lần lượt là 2 góc tạo bởi đường thẳng \({d_1};{d_2}\) với \(Ox\).
Dùng thước đo độ ta kiểm tra được\({\alpha _1} = 45^\circ ;{\alpha _2} = 135^\circ \).
Gọi \({\alpha _1};{\alpha _2}\) lần lượt là 2 góc tạo bởi đường thẳng \({d_1};{d_2}\) với \(Ox\).
Dùng thước đo độ ta kiểm tra được\({\alpha _1} = 45^\circ ;{\alpha _2} = 135^\circ \).
Cho hai hàm số \(y = x + 3\), \(y = - x + 3\) có đồ thị lần lượt là các đường thẳng \({d_1}\) và \({d_2}\).
a) Bằng cách vẽ hình, tìm tọa độ giao điểm \(A\) của hai đường thẳng nói trên và tìm các giao điểm \(B,C\) lần lượt của \({d_1}\) và \({d_2}\) với trục \(Ox\).
Cho hai hàm số \(y = x + 3\), \(y = - x + 3\) có đồ thị lần lượt là các đường thẳng \({d_1}\) và \({d_2}\).
c) Tính chu vi và diện tích của tam giác \(ABC\).
Tìm \(m\) để các hàm số bậc nhất \(y = 2mx - 2\) và hàm số \(y = 6x + 3\) có đồ thị là những đường thẳng song song với nhau.
Cho các hàm số bậc nhất: \(y = \dfrac{1}{3}x + 2\); \(y = - \dfrac{1}{3}x + 2\);\(y = - 3x + 2\). Kết luận nào sau đây đúng?
A. Đồ thị của các hàm số trên là các đường thẳng song song với nhau.
B. Đồ thị của các hàm số trên là các đường thẳng đi qua gốc tọa độ.
C. Đồ thị của các hàm số trên là các đường thẳng trùng nhau.
D. Đồ thị của các hàm số trên là các đường thẳng cắt nhau tại một điểm.
Đồ thị hàm số \(y = \dfrac{{ - x + 10}}{5}\)
A. là một đường thẳng có hệ số góc là -1.
B. không phải là một đường thẳng.
C. cắt trục hoành tại điểm có hoành độ là 10.
D. đi qua điểm \(\left( {200;50} \right)\).
Tìm \(k\) để các hàm số bậc nhất \(y = kx - 1\) và \(y = 4x + 1\) có đồ thị hàm số là những đường thẳng cắt nhau.
Tìm \(n\) để các hàm số bậc nhất \(y = 3nx + 4\) và \(y = 6x + 4\) có đồ thị là những đường thẳng trùng nhau.
Tìm hàm số có đồ thị là đường thẳng song song với đồ thị hàm số \(y = - 2x + 10\).
Cho hai đường thẳng \(y = \dfrac{1}{2}x + 3\) và \(y = - \dfrac{1}{2}x + 3\). Hai đường thẳng đã cho
A. Cắt nhau tại điểm có hoành độ là 3.
B. Song song với nhau.
C. Cắt nhau tại điểm có tung độ là 3.
D. trùng nhau.