Chương 2: TỔ HỢP. XÁC SUẤT

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Thị Hương Lý

Một lớp học có 33 học sinh, trong đó có 10 học sinh giỏi, 11 học sinh khá và 12 học sinh trung bình. Chọn ngẫu nhiên trong lớp học 4 học sinh đi tham dự trại hè. Tính xác suất để nhóm học sinh được chọn có đủ học sinh giỏi, học sinh khá và học sinh trung bình.

Nguyễn Minh Nguyệt
6 tháng 4 2016 lúc 11:06

Gọi A là biến cố : "4 học sinh được chọn có đủ học sinh giỏi, học sinh khá và học sinh trung bình"

Số phần tử không gian mẫu \(\left|\Omega\right|=C^4_{33}=40920\)

Ta có các trường hợp được chọn sau :

(1) Có 2 học sinh giỏi, 1 học sinh khá và 1 học sinh trung bình. Số cách chọn là : \(C^2_{10}.C^1_{11}.C^1_{12}=5940\).

(2)Có 1 học sinh giỏi, 2 học sinh khá và 1 học sinh trung bình. Số cách chọn là : \(C^1_{10}.C^2_{11}.C^1_{12}=6600\).

(3)Có 1 học sinh giỏi, 1 học sinh khá và 2 học sinh trung bình. Số cách chọn là : \(C^1_{10}.C^1_{11}.C^2_{12}=7260\).

Ta được \(\left|\Omega_A\right|=5940+6600+7260=19800\)

Do đó : \(P\left(A\right)=\frac{\left|\Omega_A\right|}{\left|\Omega\right|}=\frac{15}{31}\)


Các câu hỏi tương tự
Nguyễn Thùy Chi
Xem chi tiết
Hồ Như Trúc
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Phan Văn Kha
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Linh
Xem chi tiết
Phong Phann
Xem chi tiết