a/ \(3x+2xy=7\)
\(\Leftrightarrow x\left(2y+3\right)=7\)
\(\Leftrightarrow x;2y+3\inƯ\left(7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\2y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\2y+3=-7\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\2y+3=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-7\\2y+3=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-5\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\y=-\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-7\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
b/ \(3x-5xy=11\)
\(\Leftrightarrow x\left(3-5y\right)\inƯ\left(11\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\3-5y=11\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\3-5y=-11\end{matrix}\right.\\\left\{{}\begin{matrix}x=11\\3-5y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-11\\3-5y=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-\dfrac{8}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=\dfrac{14}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\y=\dfrac{2}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-7\\y=-\dfrac{4}{5}\end{matrix}\right.\end{matrix}\right.\)
Vậy ...