b: \(\sqrt{33-12\sqrt{6}}+\sqrt{\left(3-\sqrt{6}\right)^2}\)
\(=\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}+\sqrt{\left(3-\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2\sqrt{6}-3\right)^2}+\left|3-\sqrt{6}\right|\)
\(=\left|2\sqrt{6}-3\right|+3-\sqrt{6}\)
\(=2\sqrt{6}-3+3-\sqrt{6}\)
\(=\sqrt{6}\)
c: \(\dfrac{5\sqrt{3}+3\sqrt{5}}{\sqrt{3}+\sqrt{5}}-\dfrac{11}{\sqrt{15}-2}\)
\(=\dfrac{\sqrt{15}\cdot\sqrt{5}+\sqrt{15}\cdot\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{11\left(\sqrt{15}+2\right)}{11}\)
\(=\dfrac{\sqrt{15}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}-\left(\sqrt{15}+2\right)\)
\(=\sqrt{15}-\sqrt{15}-2=-2\)